Deciphering transcriptional regulatory elements that encode specific cell cycle phasing by comparative genomics analysis.

نویسندگان

  • Chaim Linhart
  • Ran Elkon
  • Yosef Shiloh
  • Ron Shamir
چکیده

Transcriptional regulation is a major tier in the periodic engine that mobilizes cell cycle progression. The availability of complete genome sequences of multiple organisms holds promise for significantly improving the specificity of computational identification of functional elements. Here, we applied a comparative genomics analysis to decipher transcriptional regulatory elements that control cell cycle phasing. We analyzed genome-wide promoter sequences from 12 organisms, including worm, fly, fish, rodents and human, and identified conserved transcriptional modules that determine the expression of genes in specific cell cycle phases. We demonstrate that a canonical E2F signal encodes for expression highly specific to the G1/S phase, and that a cis-regulatory module comprising CHR-NF-Y elements dictates expression that is restricted to the G2 and G2/M phases. B-Myb binding site signatures occur in many of the CHR-NF-Y target genes, suggesting a specific role for this triplet in the regulation of the cell cycle transcriptional program. Remarkably, E2F signals are conserved in promoters of G1/S genes in all organisms from worm to human. The CHR-NF-Y module is conserved in promoters of G2/M regulated genes in all analyzed vertebrates. Our results reveal novel modules that determine specific cell cycle phasing, and identify their respective putative target genes with remarkably high specificity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding cis-regulatory elements using comparative genomics: some lessons from ENCODE data.

Identification of functional genomic regions using interspecies comparison will be most effective when the full span of relationships between genomic function and evolutionary constraint are utilized. We find that sets of putative transcriptional regulatory sequences, defined by ENCODE experimental data, have a wide span of evolutionary histories, ranging from stringent constraint shown by deep...

متن کامل

Identification of Transcriptional Regulatory Elements by Functional Enrichment Analysis

Corresponding author Abstract Deciphering the complex interaction between transcriptional regulatory (both transand cis-) elements comprehensively and identifying these potential binding sites are fundamental problems in functional genomics. Therefore, determining the transcription factors that regulate a gene in different cell types and the cis-regulatory elements they are binding to will help...

متن کامل

Application of comparative genomics for detection of genomic features and transcriptional regulatory elements

Application of comparative genomics for detection of genomic features and transcriptional regulatory elements" (2011).

متن کامل

Transcription Regulatory Networks in Yeast Cell Cycle

Introduction The functional genomics techniques for mapping transcription regulatory networks have evolved based on advances in experimental approaches and the kinds of data generated. Studies in yeast have emphasized powerful genetic approaches that are not available in other higher eukaryotic organisms. As a consequence, yeast is particularly amenable for analyzing transcriptional regulatory ...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell cycle

دوره 4 12  شماره 

صفحات  -

تاریخ انتشار 2005